The role of vascular injury and hemodynamics in rat pulmonary artery remodeling.

نویسندگان

  • Y Tanaka
  • D P Schuster
  • E C Davis
  • G A Patterson
  • M D Botney
چکیده

Vascular remodeling in adult human elastic pulmonary arteries is characterized by diffuse neointimal lesions containing smooth muscle cells expressing extracellular matrix genes. Recent studies suggest vascular injury is needed to initiate remodeling and that growth factor mediators participate in the repair response. However, because neointimal formation is only observed in patients with pulmonary artery blood pressures approaching systemic levels, it has been hypothesized that systemic-like hemodynamic conditions are also necessary. To test that hypothesis, subclavian-pulmonary artery anastomoses were created in Sprague-Dawley rats under three different experimental conditions: no accompanying injury, or after monocrotaline or balloon endarterectomy injury. Pulmonary vascular remodeling was not induced by the subclavian-pulmonary artery anastomosis alone. A non-neointimal pattern of remodeling after mild monocrotaline-induced injury was converted into a neointimal pattern in the presence of the anastomosis. Neointima was also observed after severe, balloon endarterectomy-induced injury even in the absence of anastomosis. Tropoelastin, type I procollagen and TGF-beta gene expression, and angiotensin converting enzyme immunoreactivity, was confined to the neointima resembling the pattern of gene expression and immunoreactivity in human hypertensive elastic pulmonary artery neointimal lesions. These observations introduce the concepts that the type of injury and the associated hemodynamic conditions can modify the elastic pulmonary artery response to injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sustained Hypoxic Pulmonary Vasoconstriction in the Isolated Perfused Rat Lung: Effect of α1-adrenergic Receptor Agonist

Background: Alveolar hypoxia induces monophasic pulmonary vasoconstriction in vivo, biphasic vasoconstriction in the isolated pulmonary artery, and controversial responses in the isolated perfused lung. Pulmonary vascular responses to sustained alveolar hypoxia have not been addressed in the isolated perfused rat lung. In this study, we investigated the effect of sustained hypoxic ventilation o...

متن کامل

Effect of thoracic epidural blockade on hypoxia-induced pulmonary arterial hypertension in rats

Objective(s): The present study was aimed to investigate the influence of thoracic epidural blockade on hypoxia-induced pulmonary hypertension in rats. Materials and Methods: Forty eight Wistar rats were randomly divided into 4 equal groups, named normoxia hypoxia hypoxia/ ropivacaine and hypoxia/saline. Animals were placed in a hypoxia chamber and instrumented with epidural catheters at the t...

متن کامل

Nephrotoxicity of Isosorbide Dinitrate and Cholestasis in Rat: The Possible Role of Nitric Oxide

Background: Nitric oxide (NO), a major chemical form of endothelium-derived relaxing factor and an important regulator of vascular tone, is released by endothelial cells. The role of NO is not restricted to the vascular system, and it participates in the regulation of renal hemodynamics and renal excretory function. There are increasing evidences indicating that the elevated levels of NO play a...

متن کامل

Therapeutic efficacy of AAV1.SERCA2a in monocrotaline-induced pulmonary arterial hypertension.

BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by dysregulated proliferation of pulmonary artery smooth muscle cells leading to (mal)adaptive vascular remodeling. In the systemic circulation, vascular injury is associated with downregulation of sarcoplasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) and alterations in Ca(2+) homeostasis in vascular smooth muscle cells that stimulat...

متن کامل

Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELMalpha) induces the vascular and hemodynamic changes of pulmonary hypertension.

Pulmonary hypertension (PH) is a serious disease of multiple etiologies mediated by hypoxia, immune stimuli, and elevated pulmonary pressure that leads to vascular thickening and eventual right heart failure. In a chronic hypoxia model of PH, we previously reported the induction of a novel pleiotropic cytokine, hypoxia-induced mitogenic factor (HIMF), that exhibits mitogenic, vasculogenic, cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 98 2  شماره 

صفحات  -

تاریخ انتشار 1996